A body is considered rigid body if it cannot be deformed. Rigid body has following properties,
General motion of rigid body can be expressed as combination of rotation and translation.
As the body is rigid,
Recall, general velocity is \( \vec{v} = \dot{r} \hat{u}_r + \vec{ \omega} \times \vec{r } \)
As the body is rigid,
Recall, general acceleration is \( \vec{a} = \ddot{r} \hat{u}_r + \vec{\alpha} \times \vec{r } + 2 \dot{r} \vec{\omega} \times \hat{u }_r + \vec{\omega} \times (\vec{\omega} \times \vec{r})\)
In special case when direction of rotation is perpendicular to the plane of motion, and all rotation is about only 1 axis,
$$ \vec{a}_{B} = \vec{a}_{A} +\vec{\alpha}_{AB} \times \vec{r}_{B/A} + \vec{\omega}_{AB} \times (\vec{\omega}_{AB} \times \vec{r}_{B/A} ) $$becomes
$$ \vec{a}_{B} = \vec{a}_{A} +\vec{\alpha}_{AB} \times \vec{r}_{B/A} - |\vec{\omega}_{AB}|^2 \vec{r}_{B/A} $$