Momentum methods for particles

5.3 Angular momentum

Vivek Yadav, PhD

Angular momentum

Given a particle at Q, the angular momentum about a point P is given by,

$$ \vec{h}_{P} = \vec{r}_{Q/P} \times \vec{p}_Q = \vec{r}_{Q/P} \times m \vec{v}_Q $$

Angular momentum-impulse principle

Taking derivative of angular momentum gives

$$ \dot{\vec{h}}_p = \frac{d (\vec{r}_{Q/P} \times m \vec{v}_Q)}{dt} $$

$$ \dot{\vec{h}}_p = \vec{v}_{Q/P} \times m \vec{v}_Q+ \vec{r}_{Q/P} \times m \vec{a}_Q $$

As \( \vec{v}_{Q/P} = \vec{v}_Q - \vec{v}_P \),

$$ \dot{\vec{h}}_p = (\vec{v}_{Q} - \vec{v}_{P}) \times m \vec{v}_Q+ \vec{r}_{Q/P} \times m \vec{a}_Q $$

As Net force \( F = m \vec{a}_Q \),

$$ \dot{\vec{h}}_p = - \vec{v}_{P} \times m \vec{v}_Q+ \vec{r}_{Q/P} \times \vec{F}_Q $$

Rearranging gives,

$$ \vec{r}_{Q/P} \times \vec{F}_Q = \dot{\vec{h}}_p + \vec{v}_{P} \times m \vec{v}_Q $$

We define moment \( \vec{M} \) as,

$$ \vec{M}_Q = \vec{r}_{Q/P} \times \vec{F}_Q $$

to get,

$$ \vec{M}_Q = \dot{\vec{h}}_p + \vec{v}_{P} \times m \vec{v}_Q $$

In special case when

  • \( \vec{v}_P = 0 \) or
  • \( \vec{v}_{P} \times \vec{v}_Q = 0 \)
$$ \vec{M}_Q = \dot{\vec{h}}_p $$

Integrating gives,

$$ \vec{h}_{p,2} - \vec{h}_{p,1} = \int_{t_1}^{t_2} \vec{M}_Q dt $$

if net moment at \( Q \) is equal to zero, angular momentum is conserved

$$ \vec{h}_{p,2} = \vec{h}_{p,1} $$

EXAMPLE

Angular momentum for system of particles

For each particle \( i \) we have,

$$ \vec{M}_{i} = \dot{\vec{h}}_{P,i} + \vec{v}_{P} \times m_i \vec{v}_{i} $$

|

The first term is,

$$ \vec{M}_{i} = \vec{r}_{i/P} \times (\vec{F_i} + \vec{f}_{ij} ) $$

Newton's third law states that every action has equal and opposite reaction, therefore,

$$ \vec{f}_{ij} = - \vec{f}_{ji} $$

and

$$ \vec{r}_{i/P} \times \vec{f}_{ij} = - \vec{r}_{j/P} \times \vec{f}_{ji} $$

Therefore, adding over all particles cancels out the contribution of internal moments.

As adding over all particles cancels out contribution of internal moments,

$$ \sum_{i} \vec{M}_{i} = \sum_{i} \vec{r}_{i/P} \times \vec{F_i} $$

Adding the right hand side terms,

$$ \sum_{i} \dot{\vec{h}}_{P,i} + \sum_{i} \vec{v}_{P} \times m_i \vec{v}_{i} $$

$$ = \dot{\vec{h}}_{P} + \vec{v}_{P} \times m \vec{v}_{G} $$

Therefore for multiple particles,

$$ \sum_{i} \vec{r}_{i/P} \times \vec{F_i} = \dot{\vec{h}}_{P} + \vec{v}_{P} \times m \vec{v}_{G} $$

In special case when

  • \( \vec{v}_P = 0 \) or
  • \( \vec{v}_{P} \times \vec{v}_G = 0 \)
$$ \sum_{i} \vec{r}_{i/P} \times \vec{F_i} = \dot{\vec{h}}_{P} $$

In [ ]: