Consider a vector represented as \( \vec{r} = r \hat{u}_r \) The velocity of the particle is given by \( \dot{\vec{r}} \).
$$ \dot{\vec{r}} = \frac{d \vec{r}}{ dt} = \frac{d r }{ dt} \hat{u}_r+ r \frac{d \hat{u}_r }{ dt} $$A change in the vector \( \vec{r} \) can be due to change in the magnitude \(r \) or \( \hat{u}_r \).
$$ \dot{\vec{r}} = \frac{d \vec{r}}{ dt} = \frac{d r }{ dt} \hat{u}_r+ r \frac{d \hat{u}_r }{ dt} = \dot{r} \hat{u}_r + y \dot{\hat{u}}_r $$Two ways \( \dot{\vec{r}} \) can change,
\( \hat{u}_r \) can be written as,
$$ \hat{u}_r = cos(\theta) \hat{i} + sin(\theta) \hat{j} $$Therefore, derivative of vector \( \vec{r} \) is given by,
$$ \dot{\vec{r}} = \dot{r} \hat{u}_r + r \dot{\hat{u}}_r $$ $$ = \dot{r} \hat{u}_r + r \vec{\omega} \times \hat{u}_r $$Therefore, velocity is given by
$$ \vec{v} = \dot{\vec{r}} = \underbrace{\dot{r} \hat{u}_r}_{change~in~length} + \underbrace{\vec{\omega} \times \vec{r}}_{change~in~direction} $$Given, \( \vec{r} = r \hat{u}_r \) compute acceleration.
From before, velocity is given by,
$$ \vec{v} = \dot{\vec{r}} = \dot{r} \hat{u}_r + \vec{\omega} \times \vec{r} $$Acceleration is derivative of velocity,
$$ \vec{a} = \ddot{\vec{r}} = \dot{\vec{v}} = \ddot{r} \hat{u}_r + \dot{r} \dot{ \hat{u}}_r + \dot{\vec{\omega}} \times \vec{r} +\vec{\omega} \times \dot{ \vec{r}} $$From before,
$$ \dot{ \hat{u}}_r = \vec{\omega} \times \hat{u}_r $$and
$$ \dot{ \vec{r}} = \dot{r} \hat{u}_r + \vec{\omega} \times \vec{r} $$Rearranging terms gives,
$$ = \ddot{r} \hat{u}_r + 2 \dot{r} ( \vec{\omega} \times \hat{u}_r ) +\dot{\vec{\omega}} \times \vec{r} +\vec{\omega} \times ( \vec{\omega} \times \vec{r} ) $$Position
$$ \vec{r} = r \hat{u}_r $$Velocity
$$ \vec{v} = \dot{r} \hat{u}_r + \vec{\omega} \times \vec{r} $$Acceleration
$$ \vec{a} = \underbrace{\ddot{r} \hat{u}_r}_{linear~acceleration} + \underbrace{2 \dot{r} ( \vec{\omega} \times \hat{u}_r ) }_{coriolis} + \underbrace{\vec{\alpha} \times \vec{r}}_{rotational~acceleration} +\underbrace{\vec{\omega} \times ( \vec{\omega} \times \vec{r} ) }_{rotational~acceleration}$$In polar coordinates, we define $ \hat{u}_r $ and $ \hat{u}_\theta $, and simplify previous equations.
Choose coordinate frames such that,
$$ \hat{u}_r, \hat{u}_\theta, ~ and ~ \hat{k} $$are orthogonal, and
$$ \hat{u}_r \times \hat{u}_\theta = \hat{k}$$ $$ \hat{u}_\theta \times \hat{k} = \hat{u}_r $$ $$ \hat{k} \times \hat{u}_r = \hat{u}_\theta $$Under this notation, \( \vec{\omega} = \omega \hat{k} \)