Write an expression for each force using Cartesian representation, and evaluate the resultant force vector. Sketch the resultant force in the xyz coordinate system.

Solution

Using the sketch shown, the projections of \vec{F} in the z and a directions are

$$F_z = 200 \,\mathrm{N} \,\sin 30^\circ = 100 \,\mathrm{N},$$

$$F_a = 200 \,\mathrm{N} \,\cos 30^\circ = 173.2 \,\mathrm{N}.$$
 (2)

The component F_a may then be resolved into x and y components as follows

$$F_x = -F_a \sin 20^\circ = -(173.2 \text{ N}) \sin 20^\circ = -59.24 \text{ N},$$

$$F_y = -F_a \cos 20^\circ = -(173.2 \text{ N}) \cos 20^\circ = -162.8 \text{ N},$$
(4)

$$\vec{F} = (-59.24\,\hat{\imath} - 162.8\,\hat{\jmath} + 100\,\hat{k})\,\mathrm{N}.$$
(5)

(1)

Using the orientation geometry for \vec{Q} provided in the problem statement, we may write

$$\vec{Q} = 300 \,\mathrm{N} \left(\frac{8\,\hat{i} + 16\,\hat{j} - 11\,\hat{k}}{21} \right)$$
(6)
= $(114.3\,\hat{i} + 228.6\,\hat{j} - 157.1\,\hat{k}) \,\mathrm{N}.$ (7)

The resultant force vector
$$\vec{R}$$
 is

 $R = \sqrt{(55.05\,\mathrm{N})}$

 $= 103.1 \,\mathrm{N}.$

$$\vec{R} = \vec{F} + \vec{Q}$$

$$= (-59.24 + 114.3) \hat{i} N$$

$$+ (-162.8 + 228.6) \hat{j} N$$

$$+ (100 - 157.1) \hat{k} N$$

$$= (55.05 \hat{i} + 65.81 \hat{j} - 57.14 \hat{k}) N.$$
(8)

$$\frac{65.81 \text{ N}}{(11)} + (-57.14 \text{ N})^2 \qquad (10) \qquad 55.05 \text{ N} \qquad 57.14 \text{ N}}{(11)} \qquad x \qquad R = 103.1 \text{ N}$$

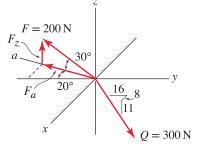
is

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the permission of McGraw-Hill, is prohibited. *z* |

16 8 11

 $Q = 300 \, \text{N}$

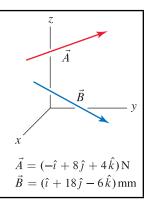
30 20°) **Solutions Manual**



The magnitude of
$$R$$

Problem 2.103

- (a) Determine the angle between vectors \vec{A} and \vec{B} .
- (b) Determine the components of \vec{A} parallel and perpendicular to \vec{B} .
- (c) Determine the vector components of \vec{A} parallel and perpendicular to \vec{B} .



Solution

Part (a) Begin by computing the magnitudes of the vectors \vec{A} and \vec{B}

$$A = \sqrt{(-1)^2 + (8)^2 + (4)^2} N = 9N, \quad B = \sqrt{(1)^2 + (18)^2 + (-6)^2} mm = 19 mm.$$
 (1)

The angle θ between these vectors is given by

$$\theta = \cos^{-1}\left(\frac{\vec{A} \cdot \vec{B}}{AB}\right) = \cos^{-1}\left[\frac{(-1\,\mathrm{N})(1\,\mathrm{mm}) + (8\,\mathrm{N})(18\,\mathrm{mm}) + (4\,\mathrm{N})(-6\,\mathrm{mm})}{(9\,\mathrm{N})(19\,\mathrm{mm})}\right]$$
(2)

$$=\cos^{-1}\left(\frac{119}{171}\right) = \boxed{45.9^{\circ}.}$$
(3)

Part (b) The parallel component of \vec{A} is given by A_{\parallel} and the perpendicular component is given by A_{\perp} , such that

$$A_{\parallel} = \vec{A} \cdot \frac{\vec{B}}{B} = \frac{(-1\,\mathrm{N})(1\,\mathrm{mm}) + (8\,\mathrm{N})(18\,\mathrm{mm}) + (4\,\mathrm{N})(-6\,\mathrm{mm})}{19\,\mathrm{mm}} = 6.26\,\mathrm{N},\tag{4}$$

$$A_{\perp} = \sqrt{A^2 - A_{\parallel}^2} = \sqrt{(9\,\mathrm{N})^2 - (6.263\,\mathrm{N})^2} = 6.46\,\mathrm{N}.$$
(5)

Part (c) The vector component of \vec{A} parallel to \vec{B} is given by

$$\vec{A}_{\parallel} = A_{\parallel} \cdot \frac{\vec{B}}{B} = (6.263 \,\mathrm{N}) \left(\frac{(\hat{i} + 18\,\hat{j} - 6\,\hat{k})\,\mathrm{mm}}{19\,\mathrm{mm}} \right) = (0.330\,\hat{i} + 5.93\,\hat{j} - 1.98\,\hat{k})\,\mathrm{N}.$$
(6)

The perpendicular vector component is then

$$\vec{A}_{\perp} = \vec{A} - \vec{A}_{\parallel} = (-\hat{i} + 8\,\hat{j} + 4\,\hat{k})\,\mathbf{N} - (0.3296\,\hat{i} + 5.934\,\hat{j} - 1.978\,\hat{k})\,\mathbf{N},$$
$$= (-1.33\,\hat{i} + 2.07\,\hat{j} + 5.98\,\hat{k})\,\mathbf{N}.$$
(7)

As a partial check of the accuracy of our results, we evaluate the magnitude of Eq. (7) to obtain

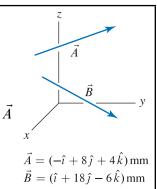
$$A_{\perp} = \sqrt{(-1.330 \,\mathrm{N})^2 + (2.066 \,\mathrm{N})^2 + (5.978 \,\mathrm{N})^2} = 6.46 \,\mathrm{N},$$
 (8)

which agrees with the value found in Eq. (5).

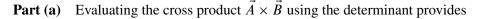
This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the permission of McGraw-Hill, is prohibited.

Problem 2.146

- (a) Evaluate $\vec{A} \times \vec{B}$.
- (b) Evaluate $\vec{B} \times \vec{A}$.
- (c) Comment on any differences between the results of Parts (a) and (b).
- (d) Use the dot product to show the result of Part (a) is orthogonal to vectors \vec{A} and \vec{B} .



Solution



$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 8 & 4 \\ 1 & 18 & -6 \end{vmatrix} \text{mm}^2$$

$$= \left\{ \hat{i} \left[(8)(-6) - (4)(18) \right] - \hat{j} \left[(-1)(-6) - (4)(1) \right] + \hat{k} \left[(-1)(18) - (8)(1) \right] \right\} \text{mm}^2$$
(2)

$$= \left(-120\,\hat{i} - 2\,\hat{j} - 26\,\hat{k} \right) \,\mathrm{mm}^2. \tag{2}$$

Part (b) Evaluating the cross product $\vec{B} \times \vec{A}$ using the determinant provides

$$\vec{B} \times \vec{A} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 18 & -6 \\ 1 & 8 & 4 \end{vmatrix} \, \mathrm{mm}^2 \tag{4}$$

$$= \left\{ \hat{i} \left[(18)(4) - (-6)(8) \right] - \hat{j} \left[(1)(4) - (-6)(-1) \right] + \hat{k} \left[(1)(8) - (18)(-1) \right] \right\} \, \mathrm{mm}^2$$
(5)

$$= (120\,\hat{\imath} + 2\,\hat{\jmath} + 26\,\hat{k})\,\mathrm{mm}^2. \tag{6}$$

Part (c) Comparing the results of Parts (a) and (b), observe that $\vec{A} \times \vec{B}$ and $\vec{B} \times \vec{A}$ are vectors with equal magnitude but opposite direction.

Part (d) Consider the vector $\vec{C} = \vec{A} \times \vec{B}$, where from Part (a), $\vec{C} = (-120\hat{i} - 2\hat{j} - 26\hat{k}) \text{ mm}^2$. Noting that two vectors are orthogonal if the dot product between them is zero, we evaluate the following dot products

$$\vec{C} \cdot \vec{A} = (-120 \text{ mm}^2)(-1 \text{ mm}) + (-2 \text{ mm}^2)(8 \text{ mm}) + (-26 \text{ mm}^2)(4 \text{ mm}) = 0,$$
 (7)

$$\vec{C} \cdot \vec{B} = (-120 \,\mathrm{mm}^2)(1 \,\mathrm{mm}) + (-2 \,\mathrm{mm}^2)(18 \,\mathrm{mm}) + (-26 \,\mathrm{mm}^2)(-6 \,\mathrm{mm}) = 0.$$
 (8)

Thus,

$$\vec{C}$$
 is orthogonal to both \vec{A} and \vec{B} . (9)

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the permission of McGraw-Hill, is prohibited.