Problem 4.10 {

Consider a 1500kg car whose speed is increased by 45km/h over a

distance of 50 m while traveling up an incline with a 15% grade. = 100
Modeling the car as a particle, determine the work done on the car

if the car starts from rest.

|
=
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Solution

We model the car as a particle and we define @ and @ to be the  coordinate system
positions of the car at the beginning and end of the 50 m stretch, ¥
respectively. Referring to the FBD on the right, we assume that the
car is subject to its own weight mg, the normal reaction N with the
ground, and a propelling force F. Subscripts 1 and 2 will denote
quantities at @ and @, respectively.

We begin by writing our energy balance.

T +U+W=T,+U, 7 mg F
T and U are the kinetic and gravitational potential energies at the i, e——0
points indicated by the subscripts, and W is the work done on the N
car between points 1 and 2, adding energy to the system. T,=0

because the car starts from rest, and we'll define the height of
Point 1 as zero so that U, =0. We then have W=T,+U,. 4

T2=%m v,” and U,=mgh,
v,=45km/h=12.5m/s and h,=50=*sin(tan ' (15/100))~7.417m
Wm%[1500]12.52+1500[9.31}?.41?

W =226.33 kJ |




Problem 4.11.

Consider a 1500 kg car whose speed is increased by 45 km/h over a e

distance of 50 m while traveling up an incline with a 15% grade. ﬁ o0 1°
Modeling the car as a particle, determine the work done on the car

if the car has an initial speed of 60 km/h.

Solution

We model the car as a particle and we define @ and @ to be the coordinate system

positions of the car at the beginning and end of the 50 m stretch,

respectively. Referring to the FBD on the right, we assume thatthe | 50m 2,
car is subject to its own weight mg, the normal reaction N with the .'-; m
ground, and a propelling force F. Subscripts 1 and 2 will denote ——ﬂ*'r‘ - -
quantities at @ and @, respectively.

We begin by writing our energy balance.

T +U+W=T,+U, A; mg 5
T and U are the kinetic and gravitational potential energies at the | _ i o—T7
points indicated by the subscripts, and W is the work done on the N

car between points 1 and 2, adding energy to the system. We'll

define the height of Point 1 as zero so that U,=0. We then have |

T1+W:T2+U2 == W:T2+U2_Tl. 8
Tl=lmvlz, T2=%mv22,and U,=mgh,

2
v,=60km/h~16.6Tmls, v,=105 km/h~29.167 m/s, and

h,=50=xsin(tan" (15/100))~7.417m

Wm%{lsnu)w.1672+150n{9.31)7.41?—%{1500)16.572

W =~53K.76 kJ|
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Problem 4.59 i

The resistance of a material to fracture is assessed with a fracture test. One
such test is the Charpy impact test, in which the fracture toughness is assessed
by measuring the energy required to break a specimen of a specified geometry.
This is done by releasing a heavy pendulum from rest at an angle 8; and by L
measuring the maximum swing angle ¢ reached by the pendulum after the
specimen is broken. Suppose that in an experiment 6; = 45°, fy = 23°, the
weight of the pendulum’s bob is 3 1b, and the length of the pendulum is 3 ft. ﬁ '
Neglecting the mass of any other component of the testing apparatus, assuming

that the pendulum’s pivot is frictionless, and treating the pendulum’s bob as a

particle, determine the fracture energy of the specimen tested. Assume that the

fracture energy is the energy required to break the specimen.

S
>

Solution

We model the bob as a particle subject to its own weight mg, the tension in
the pendulum arm F,, and the contact force with the specimen F,. Clearly,
this force is considered equal to zero when the bob is not in contact with
the specimen. We denote by @ the position at which the bob is released.
We denote by @ the position at which the bob stops. We use subscripts 1
and 2 to denote quantities at @ and @, respectively. We observe that Fg
does no work because the arm can be modeled as inextensible. Therefore,
all of the work done between @ and @ is due to the weight mg, which is
conservative, and the contact force with the specimen. In absolute value,
the latter work corresponds to the energy required to break the specimen.

datum

Balance Principles. Applying the work-energy principle between @ and @, we have
T+ Vi+ (Uia)e = T2 + Va2, 8]
where V' is the potential energy of the bob, (U)_2), is the energy required to break the specimen, and where,

denoting by v the speed of the bob,

T = %muf and T3 = %mv%. (2)

Force Laws. We do not provide an expression for (U;.2)n since this is the quantity we want to determine.
As for V', due to the choice of datum and denoting by L the length of the arm of the pendulum, we have

V1 =—-mgLcosf; and V2= -—mgLcosfy. (3)
Kinematic Equations. The bob is released from rest in @ and comes to a stop in @. So
vy =0 and wva =0. 4
Computation. Substituting Eqs. (2)-(4) into Eq. (1), we have
—mgLcosb; + (Ui = —mgLcosby = (Uy2)ae = mgLicos f; —cos ). (s)

The quantity (U.2), is the work done on the pendulum bob by the specimen. Hence the energy required
to break the specimen is the negative of (U).2)nc.. Keeping this in mind, and recalling that m = 31b/g,
g =32.21t/s%, L = 3ft, §; = 45°, and Gr = 23°, we can evaluate (U).2)nc to obtain

Energy required to break the specimen = 1.921 ft-Ib.
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Problem 4.84 |

Solve Example 4.14 by applying the work-energy principle to each
block individually, and show that the net work done by the cord on
the two blocks is zero.

L L.
— frictionless

Solution

We denote by @ the release position of the system. We denote by
@ the position of the system after the blocks have moved a relative
distance d. We consider A and B as a system of two particles and we
sketch an FBD for each of these particles between @ and @. The forces
muqg and mpg are the weights of A and B, respectively. Ny is the
normal reaction between A and the incline. Ng is the normal reaction
between A and B. F, is the tension in the cord. Fp is the friction
force between A and B. We will apply the work-energy principle to 4
and B individually. We will use subscript 1 and 2 to denote quantities
in @ and @, respectively.

Balance Principles. Applying the work-energy principle to A and

B, we have
I MBE\ g
Tas + Var + [(U12)ads = Taz + Vi, ® Vo
Tp1 + Va1 + [(Ui2)nelg = T2 + Va2, @ Fp /'\N
where V4 and Vg are the potential energies of A and B, respectively, ?
and where, denoting by v4 and v the speeds of A and B, respectively, NB\ / 3Fe
Tar = tmav},, Toi = impv}), 3 Fp
Typ = smavi,, Tpa = impv} ® l; N
A2 = M4V, B2 = 5MpUp,. g VA
In addition, observing that F. and Fg are the only nonconservative
forces that do work because the motion of 4 and B is only along the x direction, we have
X42 XB2
(Oada= [ ~(Fa+3F)dx and (Widedy= [ (Fa-Fodsa. @
X41 XRB1

Force Laws. Choosing the datum for gravity at @, we have
Var =0, Vg1 =0, Var=-—-mag(xaz—x41)sin8, Vpz =—-mpg(xpz—xp1)sinf. (5

To determine the work of the internal force, we observe that Fg = p; Ng. To determine Ng, summing the
forces acting on B in the y direction, we observe that Ng — mpg cos@ = 0 because B does not move in the
y direction. Therefore, we have

Fp = upmpgcosb. (6)
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Kinematic Equations. The system is released from rest, so
v41 =0 and wvg, =0. )
Denoting by L the length of the cord,
L =3xq4+xp =constant = 3x41+xp =3xa2+xg2 = xp2—xp1 = —3(xa2—x41). (8)

Now we recall that the distance of A relative to B in @ is d, i.e., (x42 — x41) — (xp2 — xB1) = d. Using
this fact and the last of Eqgs. (8), we conclude that

xg2 —Xg1 = 1d and xpy—xp1 =-3d. ®
In addition, taking the differential and the time derivative of the first of Egs. (8), we have
dxg = —-3dxg and vg = 3vy, (10)

where, in the last of Egs. (10), we have accounted for the fact that the speed of an object is nonnegative.

Computation. Using Egs. (7) and the last of Egs. (10), we can rewrite Eq. (3) as follows:

Tar =0, Tp =0, Tap=3mavi,, Tpa=3mpvi, an
Using the last of Egs. (9), we can rewrite Egs. (5) as follows:
Var =0, Vg1 =0, Vip=—3imagdsind, Vpo= 3mpgdsinb. (12)
Substituting (where appropriate) Egs. (4), (11), and (12) into Egs. (1) and (2), we have
XAz XA2
f —Fpdxy —f 3F.dxy = %mAviz - %mAgd sin 8, (13)
XAl XAl
XB2 XB2
f Fpdxpg —f F.dxg = %mgviz -+ %mggd sin 6. (14)
xp1 XRB1

We now use the first of Eqs. (10) to perform a change of variable of integration for the integrals on the
left-hand side of Eq. (14) and rewrite Eq. (14) as follows:

XA2 XA2
f —3Fgdxs + f 3F, dxg = 3mpv}, + 3mpgd sinf. (15)
X,

Al XAl

Except for its sign, the second term on the left-hand side of Eq. (13) (the work done by the tension
in the cord on A) is equal to the corresponding term in Eq. (15) (the work done by the tension in
the cord on B). Thus the net work done by the tension in the cord on the system is equal to zero.

Summing Eqgs. (13) and (15) and using Eqgs. (6) and the first of Egs. (9), we have

—upmpgdcosf = %(mA 4 9m5)vf;2 — %(mA —3mp)gd sin 6. (16)
Solving the above equation for v4,, we have
2gd
Vaz = \/M[i(mA—3m3)sm6—ukm30038]. 17

Recalling that myg = 4kg, mp = 1kg, 6 = 30°, uy = 0.1, and d = 0.35m, we can evaluate v42 and then
vp2o (using the last of Egs. (10)) to obtain v4, = 0.1424 m/s and vgy = 0.4273 m/s. The problem requires
us to determine the velocities of A and B. Observing that A moves in the positive x direction and that B
moves in the opposite direction, expressing our answer in vector form, we have

D42 = 0.1424im/s and Ugs = —0.42737m/s i.. @0

as expected.
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Problem 5.94 |

Ball B is stationary when it is hit by an identical ball A as shown, with § = 45°.
The preimpact speed of ball A is vg = 1 m/s.

Determine the postimpact velocity of ball B if the COR of the collision
e =1

Solution

We model the impact of 4 and B as an unconstrained oblique central
impact of two particles. The impact-relevant FBD of A and B as a
system and of A and B individually is shown at the right, where we
have denoted by x an axis perpendicular to the LOT and by y the
LOT itself. We will denote the masses of 4 and B by m, and mp,
respectively. In addition, following the convention introduced in the
textbook, we will use the superscripts — and + to denote quantities  L.oI Lot
computed right before and right after impact.

Balance Principles. As with any unconstrained oblique central impact, we have conservation of momentum
for the entire system along the LOI along with conservation of momentum for 4 and B individually in the
direction perpendicular to the LOL:

- - _ + +
MAVy, + MBUR, = MV, + MBUg . (1
mavy, = mAv;x, 2)
- +
mpug, = Mpug_ . 3

where v4, and vy, are the x and y components of the velocity of 4, and vg, and vp, are the x and y
components of the velocity of B.

Force Laws. The effect of the contact force P between A and B is expressed via the COR equation (along

the LOI):

+ + -
U4y~ Vpy = e(vsy — UAy). 4)

Kinematic Equations. Before impact, A4 is traveling with a speed vg at an angle f with respect to the LOI
whereas B is stationary. Hence, we have

vy, = —vgsinf, Uy, = Vg €08 B. vg, =0 Ugy = 0. (5)

Computation. Substituting Eqs. (5) into Egs. (1)-(4) we obtain

— + +
mAvocosﬁ—mAvAy +mpug,. (6)

: — ot
—vgsinf = vy, (7

_ .+
0=}, ®)

+ _ ot = _

gy — Vg, = —€UpCos B. 9
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Dynamics 2e 999

which is a system of four equations in the four unknowns v}, v;y, vy, and vgy whose solution is

: myq —emp ma(l +e)
Vi, = —Vosinf, vy = V0 mp cosf, vp, =0, vp, =v myfmp cos f. (10)
Recalling that m4 = mp, the solution can be simplified to
Vi, = —vosinB, vy = svo(l—e)cosf, vh =0, Vg, = Lvg(1 + e) cos B. (11)

Recalling that vg = 1 m/s,e = 1, and 8 = 45°, we can evaluate the postimpact velocity of B to obtain

b5 =0.7071 fm/s. /' /@ — 45°
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Problem 5.95 |

Ball B is stationary when it is hit by an identical ball A as shown, with 8 = 45°.
The preimpact speed of ball 4 is vy = 1 m/s.

Determine the postimpact velocity of ball 4 if the COR of the collision
e =0.38.

Solution

We model the impact of 4 and B as an unconstrained oblique central
impact of two particles. The impact-relevant FBD of A and B as a
system and of A and B individually is shown at the right, where we
have denoted by x an axis perpendicular to the LOI and by y the
LOT itself. We will denote the masses of A and B by m4 and mp,
respectively. In addition, following the convention introduced in the
textbook, we will use the superscripts — and + to denote quantities 1.0 Lot
computed right before and right after impact.

Balance Principles. As with any unconstrained oblique central impact, we have conservation of momentum
for the entire system along the LOI along with conservation of momentum for 4 and B individually in the
direction perpendicular to the LOL

- - _ “ +

MmAVy, +Mmpvp, —mAvAy+m3vBy, (€))]
o +

mAvAx - mAvAx! (2)

mBVy, = MBUg., 3)

where v, and vy, are the x and y components of the velocity of A, and vg, and vpg, are the x and y
components of the velocity of B.

Force Laws. The effect of the contact force P between A and B is expressed via the COR equation (along
the LOI):

+ + - -
Uiy ~ Vpy = e(vg, — Ugy)- @

Kinematic Equations. Before impact, 4 is traveling with a speed vg at an angle § with respect to the LOIL
whereas B is stationary. Hence, we have

Uy, = —Vgsinf, Ugqy = VocoS B, vg, =0, vg, = 0. 5

Computation. Substituting Egs. (5) into Egs. (1)—(4) we obtain

_ + +
mvgcos f =mqvy, +mpvg,, 6)
—vgsinf = vy, (©)]
+

0=uj,, ®

+ + _ _
Vyy — Vg, = evg cos B, ()]
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which is a system of four equations in the four unknowns v}, v;y, vy, and vgy whose solution is

: myq —emp ma(l +e)
Vi, = —Vosinf, vy = V0 mp cosf, vp, =0, vp, =v myfmp cos f. (10)
Recalling that m4 = mp, the solution can be simplified to
Vi, = —vosinB, vy = svo(l—e)cosf, vh =0, Vg, = Lvg(1 + e) cos B. (11)

Recalling that vg = 1 m/s, e = 0.8, and f = 45°, we can evaluate the postimpact velocity of 4 to obtain

3 = (~0.70717 + 0.07071 ) m/s. /" /@ — 45°

This solutions manual, in any print or electronic form, remains the property of MeGraw-Hill, Inc. Tt may be used and/or possessed only by permission June 25, 2012
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of MeGraw-Hill, is prohibited



1058 Solutions Manual

Problem 5.133 i

The body of the satellite shown has a weight that is negligible with spin axis
respect to the two spheres A and B that are rigidly attached to it, which
weigh 1501b each. The distance between A and B from the spin axis
of the satellite is R = 3.5 ft. Inside the satellite there are two spheres
C and D weighing 4 1b mounted on a motor that allows them to spin
about the axis of the cylinder at a distance » = 0.75ft from the spin
axis. Suppose that the satellite is released from rest and that the internal
motor is made to spin up the internal masses at an absolute constant
time rate of 5.0rad/s? (measured relative to an inertial observer) for
a total of 10s. Treating the system as isolated, determine the angular
speed of the satellite at the end of spin-up.

internal rotating element

Solution

Referring to the figure at the right, let k denote the positive direction of B
the spin axis and let O be a reference point on the spin axis. We model i
A, B, C, and D as a system of particles. We observe that this system is ;
isolated. Therefore, the angular momentum of the system is conserved.

We define #; and 3 to be the time instants when the C and D are put in O=
motion, and after they have been spun for a total of 10 s, respectively. We

use the subscripts 1 and 2 to denote quantities at £; and ¢, respectively.

We assume that throughout the motion the orientation of the spin axis does

not change and that z axis is stationary relative to some inertia reference

frame.

9

Balance Principles. Applying the impulse-momentum principle in the / " spin axis
form of conservation of angular momentum, and focusing on the compo-
nent of the angular momentum along the z axis, which is the spin axis,

we have

£— internal rotating element

(k()z)l = (k02)2» (D

where, assuming that the system only rotates about the spins axis,
hoz = (mg + mp)ws R? + (mc + mp)wir?, 2

where &5 = wg k denotes the angular velocity of the external masses moving with the body of the satellite
(the subscript s stands for ‘satellite’), and where @; = w; k denotes the angular velocity of the internal
masses (the subscript i stands for ‘internal’).

Force Laws. All forces are accounted for on the FBD (the system is isolated so there are no external forces
acting on the system).

Kinematic Equations. Assuming motion of the satellite only about the z axis, the angular acceleration of
the internal masses is R

di = a; k, 3
where @; = 5.001ad/s?. Assuming that the spin axis does not change orientation, since the system is initially
at rest, letting v = #; — ¢; = 10s, the initial and final angular velocities of the internal masses are

ws1 =0, w1 =0, w>2=0wt. @
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Computation. Substituting Egs. (2) and Egs. (4) into Eq. (1), we have

me +m r2
0= (my +mp)R2wzm + (me +mp)rieit =  wgp = —ﬁd;r. (5)

Recalling that mc = mp = 4lb/g g = 32.2ft/s2, r = 0.75ft, mqg = mp = 1501b/g , R = 3.51t,
a; = 5.0rad/s?, and T = 10s, we can evaluate the angular speed |@s2| = |ws2| to obtain

|&s2| = 0.06122rad/s.
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