Dynamics 2e 407

® Problem 3.2%

An object is lowered very slowly onto a conveyor belt that is moving to the right. What is the direction of
the friction force acting on the object at the instant the object touches the belt?

Solution

The friction force will be directed to the right. The horizontal velocity of the object as it is lowered onto the
belt is equal to zero. Also, the vertical velocity of the object is negligible. Therefore, the relative velocity
of the object with respect to the belt is horizontal and pointing to the left. Since the kinetic friction force
opposes relative motion, then this force must point to the right.
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¥ Problem 3.3 ¢

A person is trying to move a heavy crate by pushing on it. While the person is pushing, what is the resultant
force acting on the crate if the crate does not move?

Solution

The resultant force on the crate is equal to zero. If the object is not moving, then its acceleration is equal to
zero and Newton’s second law dictates that the total force acting on the object be equal to zero.
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Problem 3.4

A person is lifting a 751b crate A by applying a constant force P = 401b to the pulley system shown.
Neglecting friction and the inertia of the pulleys, determine the acceleration of the crate. Treat all rope
segments as purely vertical.
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Solution

We neglect the motion of the crate in the horizontal direction, we neglect the inertia of the P? Tp 6
rope and of the pulleys, and we model the rope as inextensible. These assumptions allow us

to say that the tension in the rope is uniform along the rope and equal to the force applied

by the person. Performing an imaginary cut along a horizontal line placed right above the

lower pulley, we have that the FBD of the system, modeled as particle subject to gravity and ®
the force in the rope, is that shown in the figure at the right. 4 l

Balance Principles. Applying Newton’s second law in the vertical direction, we have
W
Y Fy: 2P —W = —ay,, (1)
g

where W/ g is the mass of the crate and a4, is the vertical component of the acceleration of the crate.
Force Laws. All forces have been accounted for on the FBD.

Kinematic Equations. We do not need any special kinematic equation since we want to determine a4,y
directly.

Computation. Solving Eq. (1) for a4y, we have

2P
aay =g(W—l). (2)

Recalling that g = 32.2ft/s?, P = 401b, and W = 75 b, expressing our answer to three significant figures
and in vector form, we can evaluate the result in Eq. (2) to obtain

ay = 2.147fft/$2. fj_ ;
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Eroblem 351

The motor M 1is at rest when someone flips a switch and it starts pulling
in the rope. The acceleration of the rope is uniform and is such that it
takes 1 s to achieve a retraction rate of 4 ft/s. After 1 s the retraction rate
becomes constant. Determine the tension in the rope during and after the
initial 1 s interval. The cargo C weighs 130 1b, the weight of the ropes and
pulleys is negligible, and friction in the pulleys is negligible.

motor M ¥

cargo C

Solution

We neglect the horizontal motion of the cargo C. We also neglect the inertia of the FT FT FT
pulleys so the tension in the rope is uniform. Since we are neglecting the inertia of e ¢
the pulleys, we analyze the system obtained by cutting along a horizontal line passing
between the two pulleys. Modeling this system as a particle subject only to gravity
and the tension in the rope, we have the FBD shown at the right.

cargo C ()
Balance Principles. Applying Newton’s second law in the vertical direction, we
have w
P
w
By Bt W= acy, \ Y (1)

where F¢ is the tension in the rope, W/g is the mass of C, and ac, is the vertical component of the
acceleration of C.

Force Laws. All forces are accounted for on the FBD.

Kinematic Equations. Using the coordinate system shown at the right,
the length of the cord being retracted can be expressed as 4 T

L = 3yc + constants. @) otor M

Differentiating Eq. (2) twice with respect to time and observing that ac, =
V¢, we have

L=3J¢ = Je=L/3 = ag=LJ3 3)

To determine L we let 1o = 1s and we recall that the cord starts from
rest at £ = 0, that I, is constant, and that, for t = 1o, the rate of retraction
is Lo = —4ft/s (the minus sign indicates that the cord is getting shorter).
Therefore, applying constant acceleration equations, L. = Lo/tg = —4ft/s>.
In addition, for ¢ > tq, the rate of retraction becomes constant and [, =0.1In summary, we have

cargo C

L 1.
G =0 = —4ft/s" for0 <t <1y,
L=1% - @)
0 fort > 1y.
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Computation. Substituting the last of Egs. (3) into Eq. (1) and solving for the tension in the cord F¢,

Recalling that W = 1301b, g = 32.2ft/s?, and using Eq. (4), we can evaluate Eq. (5) to obtain

W L
Fo=r=f1==—}
3 3g

¢

45.131b° forO0 <t <15,
43.331b - fort > 1s.
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Problem 3.151

A suitcase is released from rest at A on the 6 = 30° ramp. It slides
a distance { = 25 ft and then goes over the edge at B and drops a
height 7 = 5ft. Determine the horizontal distance d to the landing
spotat C.

Assume that the coefficient of static friction is insufficient to
prevent slipping and that the coefficient of kinetic friction on the
incline between A and B is p; = 0.3.

Solution

We model the motion of the suitcase 4 from B to C as projectile FBD from Bto € FBD from release to B
motion. This motion is completely determined by the velocity of mg mg N\ X

A at B. To determine this velocity, we study the sliding motion of 0 Hay
A down the incline by modeling A as a particle subject to its own G : - A
weight mg, the normal reaction N with the incline, and the friction /. !
force F (see figure at the right). Between the release point and B ; F :\

we use the component system 4, and #, aligned with the incline. 3

Between B and C we use the component system 7 and j, with j directed opposite to gravity.

Balance Principles. Applying Newton’s second law in the p and ¢ directions, we have

ZF,,: mgsinf — F = may,, (D)

Z Fy: N —mgcosf =magg,, (2)
where a4, and a44 are the p and ¢ components of the the acceleration of the Crate, respectively.
Force Laws. Because A is sliding,

F = ugN. 3)
q
Kinematic Equations. Since 4 does not move perpendicular to \”
P e

the incline,
agp=p and ayy =0. 4)

Also, for future use, we set the origin Q of the pg coordinate system
at the release position of A (see figure at the right). Therefore we
have that p = 0 for p = 0. In addition, when studying the projectile
motion of A, we will be using the xy Cartesian coordinate system oo Ap /é

with origin at O. Since we will first obtain the velocity of 4 at B in =+ —*———ﬁT—f*“’,'o

the pg coordinate system, we will then need to express this result =

in the xy coordinate system. To do so, we express unit vectors 1, and #i4 in terms of the unit vectors 7 and :

up =cosfli—sinf) j and 1y =sinfi+ cosh J. 5)
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Computation. Substituting Eqs. (3) and (4) into Egs. (1) and (2), we have
mgsin® —ugN =mp and N —mgcost = 0. (6)
These equations form a system of two equations in the two unknowns p and N whose solution is
p=g(sinf — ppcost) and N = mgcosh. (7)

To determine the velocity of A at B, we use the chain rule to write p = pd p/dp. Using the first of Egs. (6),
and keeping in mind that the motion from Q to B is only in the positive p direction, we can then write

vp ¢
pdp = gsind — g cosf)dp = / ﬁdp':/ g(sin@ — ju cos0) dp, (8)
0 0

where v is the speed of A at B, and where we accounted for the fact that p = 0 for p = 0. Carrying out the
integration and solving for vp gives

%vg = g(sinf — g cosO) = vp = /2g(sinf — i cos O)L. 9)

We now observe that the velocity of A at B is vp = vp il,. Therefore, using the first of Egs. (5) and the last
of Egs. (9), we have

Up = v/2g(sin@ — g cos 0)¢ (cosO1—sinb J). (10)

We are now ready to determine the projectile motion from B to C. Here we have
X=0 and Jy = —g. (11)

For convenience, we set 7 = 0 to be the time at which A is at B. Hence, using constant acceleration equations,
we have that the x and y coordinates of A as a function of time are

x =vpy! and y =h+vpyt—1gt? (12)

which account for the fact that x = 0 and y = & when ¢ = 0, and in which, using Eq. (10),

5

VByx = cos0 \/2g(sin€ — pgcos@)l and vp, = —sinb \/2g(sin9 — g cos 0)L. (13)

Referring to the second of Eqs. (12), and letting /¢ be the time when A is at C, we have y(t¢c) = 0, i.e.,

1
0=h+vgytc — %gt% = Ic= E(L‘By =+ ‘/v;’;y + 2g/1). (14)

Observing that the only physically meaningful root is the one with the plus sign in front of the square root,
and substituting this result into the first of Egs. (12), we have

v
d = —gf‘—(vgy +\/v3, + 28h). (15)

where we have accounted for the fact that d = x(t¢). Recalling that g = 32.2ft/s*, 8 = 30°, juy = 0.3,
£ = 25ft, and h = 5ft, we first evaluate vg, and vg, in Egs. (13) (this gives vgxy = 17.03ft/s and

vgy = —9.8321t), and then we use these values (to their full precision) in Eq. (15) to obtain

d =5.6221t. (16)
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Problem 3.18

As the skydiver moves downward with a speed v, the air drag exerted by the parachute on the skydiver has
a magnitude F; = C4v? (Cy is a drag coefficient) and a direction opposite to the direction of motion.
Determine the expression of the skydiver’s acceleration in terms of Cy, v, the mass of the skydiver m, and
the acceleration due to gravity.

Solution

We model the skydiver as a particle moving only in the vertical direction.
We assume that the forces acting on the skydiver are only gravity and the air
resistance. Hence, the FBD of the skydiver is that shown at the right.

Balance Principles. Applying Newton’s second law in the vertical direction,
we have

Z Fy: Fg—mg = ma, (1)

where F is the air drag force due to the parachute anda, is vertical compo-
nent of the skydiver’s acceleration.

Force Laws. As indicated in the problem statement, the force law for Fy is
Fy = Cqv?. (2)

Kinematic Equations. Since we are solving for the acceleration direc
kinematic equations.

do not need any special

Computation. Substituting Eq. (2) into Eq. (1) and solving for a,, we ha

Cq
(ly = —U2 —

8- (3)

Finally, expressing our answer in vector form, we have that the acceleration of the skydiver is

a:(ﬂlﬁ_g)f. '. 6
m
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